

Calcoli

La concentrazione in aria si calcola applicando la:

$$C = \frac{m}{Q_{\kappa} \cdot t} 1000$$

dove:

C = concentrazione in mg·m-3

m = massa di analita reperita nella cartuccia in μg

Q_K = portata di campionamento in ml·min-1

t = tempo di esposizione in minuti.

Esposizione

La portata di campionamento è costante per esposizione fino ad 8 ore con umidità relativa fino all'80% per concentrazione di N₂O fino a 500 ppm e cumulativa di alogenati fino a 100 ppm.

Esposizioni di durata superiore a 8 ore in ambienti a umidità relativa superiore al 80% conducono alla progressiva perdita del N₂O già campionato per effetto della competizione del vapor d'acqua sui siti attivi del setaccio molecolare.

Limite di rivelabilità e incertezza

Le cartucce sono predepurate in modo da garantire un bianco gascromatografico inferiore a tre volte il rumore alla mimima attenuazione strumentale.

Usando un rivelatore ECD in buono stato, quattro ore di esposizione garantiscono i seguenti limiti di sensibilità analitica: 0,5 ppm di N₂O, 0,002 ppm di forano, 0,01 ppm di etrano e 0,002 ppm di alotano. **Il sevorano non risponde all'ECD**. Con sensibilità accettabile, può essere usato il rivelatore a ionizzazione di fiamma (FID) ma, se si desidera dosare contemporaneamente anche il protossido di azoto o gli altri alogenati, è necessario ricorrere allo spettrometro di massa. Lavorando in SIM, si ottengono, per N₂O, forano, etrano e alotano, limiti di sensibilità analitica confrontabili con quelli raggiunti dall'ECD; un'ora di esposizione permette di dosare 0,1 ppm di sevorane.

L'incertezza a 2σ è: 5,5 % per N_2O , 4,7-5,6 % per forano, etrano e alotano con rivelatore ECD; 6,2 % per N_2O e 5,5-6,2 % per forano, etrano, alotano e sevorano con rivelatore MS.

IMPORTANTE

NON STERILIZZARE IN AUTOCLAVE. II trat-

tamento in autoclave altera irreparabilmente

le caratteristiche della membrana siliconica.

Durata e conservazione

La confezione codice 125 è fornita sterilizzata a raggi γ . L'uso del campionatore fa decadere la sterilizzazione.

Fatta eccezione per la cartuccia adsorbente, il campionatore è riutilizzabile un numero illimitato di volte. Dopo il primo campionamento, l'utente può provvedere da sè alla sterilizzazione:

sarà sufficiente ordinare le cartucce codice 132, per le quali la sterilizzazione non è indispensabile.

Conservate in luogo asciutto e non contaminato, le cartucce integre sono stabili per almeno 12 mesi. Numero di lotto e data di scadenza sono stampati sull'involucro trasparente. Dopo il campionamento, le cartucce conservate allo stesso modo sono stabili per 30 giorni.

Analisi

Materiali occorrenti per l'analisi

- ✓ vial da spazio di testa da 20 ml
- ✓ miscela acqua-metanolo 60/40 in volume
- ✓ normale vetreria da laboratorio.

radiello è brevetto della FONDAZIONE SALVATORE MAUGERI-IRCCS Centro di Ricerche Ambientali - via Svizzera, 16 - 35127 PADOVA tel. 0498 064 511 fax 0498 064 555 e.mail fsmpd@fsm.it

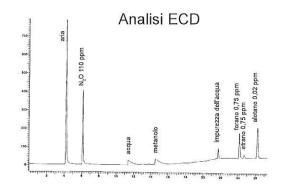
fonte: http://l

Materiali occorrenti per la retta di calibrazione

- √ N₂O puro in bombola
- √ anestetici alogenati
- ✓ siringhe da gas da 500 µl e microsiringhe da 100 e da 10 µl
- ✓ bottiglia in vetro da 1 litro con collo filettato, tipo SVL o equivalente, tappo a vite forato e sottotappo in gomma e PTFE: misurarne accuratamente il volume pesandola piena d'acqua.
- ✓ agitatore magnetico con ancoretta di medie dimensioni (orientativamente 30-40 mm di lunghezza)
- ✓ normale vetreria da laboratorio.

Trattamento del campione

Con una pipetta tarata versare nel vial 10 ml della miscela acqua-metanolo; introdurre la cartuccia di radiello e tappare immediatamente. Agitare, sistemare il vial nello strumento dello spazio di testa e lasciar termostatare per un'ora a 45° C.


Analisi strumentale

Rivelatore ECD (il sevorano non si vede)

- √ gas di pressurizzazione del vial: N₂ a 1,2 atm
- ✓ loop: 1 ml
- ✓ colonna gascromatografica: Poraplot Q (Chrompack 7554 o equivalente), lunga 30 m, 0,32 mm di diametro, 20 µm di spessore (questa colonna consente di dosare sia il protossido di azoto che gli alogenati con una sola analisi)
- ✓ carrier: N₂ a 1,0 atm
- √ rapporto di split: 10/1
- √ gas di make-up: Ar-CH₂ (10% v/v di CH₂) al flusso di 30 ml·min-¹
- ✓ temperature:
- √ forno: 40° C per 2 min, 10° C·min-1 fino a 150° C, 6° C·min-1 fino a 200° C, isoterma per 5 minuti
- √ iniettore: 150° C ✓ ECD: 300° C
- In queste condizioni si producono gascromatogrammi simili a quello mostrato accanto, ottenuto dopo esposizione di quattro ore ai valori di concentrazione indicati e ad umidità relativa del 70%.

Rivelatore MS

Le condizioni strumentali sono uguali a quelle usate per l'ECD, è sufficiente sostituire l'azoto con l'elio ed eliminare il gas di makeup. Operare in SIM e focalizzare il rivelatore sui seguenti ioni di massa (sottolineato il picco-base):

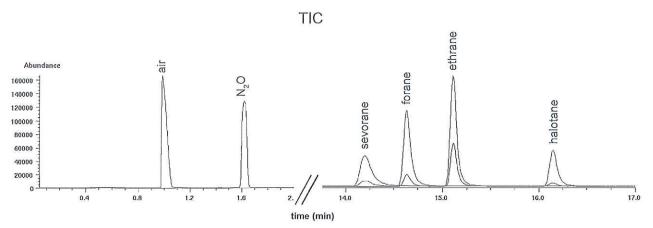
N₂O: <u>44</u>; forano ed etrano: <u>51</u>, 67, 117; alotano: <u>117</u>, 198, 179; sevorano: <u>33</u>, 131, 181

Conviene lavorare oscurando l'acquisizione dello ione 44 dopo 4 minuti (si evita il picco del CO2) ed attivando quella degli altri ioni solo dopo 14 minuti dall'iniezione. Nell'intervallo, si può acquisire uno ione di massa "muta", ad esempio 500. A pag. L4 è mostrato il gascromatogramma-tipo in corrente ionica totale. Rispetto all'analisi in ECD, i tempi di ritenzione sono accorciati per effetto del vuoto applicato alla coda della colonna.

Calibrazione

Le rette di calibrazione di N₂O e degli alogenati possono essere realizzate simultaneamente, introducendo tutti gli analiti nello stesso campione.

Preparare almeno 6 vial, versando in ciascuno 10 ml di miscela acqua-metanolo ed una cartuccia vergine. Un vial serve da bianco.


Collegare alla bombola di N₂O l'estremità di un tubo di silicone, portando l'altra estremità sotto cappa. Aprire la bombola in modo che fluisca circa 1 ml·min-1 di gas e lasciar fluire per qualche minuto.

Nel frattempo, posizionare la bottiglia con l'ancoretta e con il tappo a vite ben chiuso sull'agitatore magnetico, mettendolo in funzione.

fonte: http://l

Con una siringa da 20 ml (una siringa da gas è la soluzione ottimale, ma vanno bene anche quelle in plastica monouso un po' a scapito dell'accuratezza) estrarre 40 ml d'aria dalla bottiglia, prelevarne altrettanti di N_2 O puro ed iniettarli nella bottiglia. Se il volume della bottiglia è esattamente di 1 litro, la concentrazione di N_2 O diventa 71,8 μ g·ml⁻¹ a 25°C. Apportare la necessaria correzione se il volume è diverso.

Con la siringa da gas prelevare i volumi di N₂O puro o da bottiglia secondo lo schema seguente, introducendoli nei vial:

Vial n°	N₂O puro μΙ	N₂O da bottiglia µl	pari a µg di N₂O in vial	esposizione equivalente mg·m ⁻³ ·min
0	(186) (1 86)			
1	200		359	283.120
2	100		179,5	141.560
3	-	1.000	71,8	56.625
4	-	500	35,9	28.312
5		250	18.0	14 156

Preparare una soluzione in metanolo contenente, in 500 ml, 100 µl di forano, 100 µl di etrano, 50 µl di alotano e 100 µl di sevorano. Introdurre i volumi di soluzione dello schema sottostante nei vial della tabella precedente che hanno già ricevuto il protossido di azoto:

Vial n°	μl di soluzione	μg introdotti			esposizio	ne equiva	lente in r	ng∙m ⁻³ ∙min	
		forano	etrano	trano alotano sevorano		forano	etrano	alotano sevorano	
0	0	-0-0		### ((100)	44)	
1	100	30,6	30,6	18,7	30,5	9.270	7.065	2.619	21.479
2	50	15,3	15,3	9,35	15,25	4.635	3.533	1.310	10.739
3	25	7,65	7,65	4,68	7,63	2.318	1.766	655	5.370
4	10	3,06	3,06	1,87	3,05	927	707	262	2.148
5	5	1,53	1,53	0,94	1,53	464	353	131	1.074

I valori sopra proposti coprono di solito le situazioni estreme di sala operatoria. L'analista può, ovviamente, optare per valori diversi, tenendo però presente di non simulare valori di esposizione superiori a 400.000 mg·m³·min per il protossido di azoto e di 50.000 mg·m³·min per ciascuno degli alogenati.

Attenzione! Può capitare che la risposta dell'ECD non sia lineare: usare la curva sperimentale così com'é senza tentare di linearizzarla. Accertarsi, però, che passi per lo zero.

Dati utili						
nome	formula	peso molecolare	1 mg⋅m ⁻³ a 25°C = ppm			
protossido di azoto	N ₂ O	44	0,556			
forano	CHF ₂ -O-CHCI-CF ₃	184,5	0,133			
etrano	CHF ₂ -O-CF ₂ -CHCIF	184,5	0,133			
alotano	CF ₃ -CHBrCl	197,4	0,124			
sevorano	CH ₂ F-O-CH(CF ₃) ₂	200	0,123			

fenoli

(desorbimento termico)

Componenti di radiello da utilizzare

Corpo diffusivo bianco codice 120 Piastra di supporto codice 121 Adattatore verticale codice 122 (opzionale) Cartuccia adsorbente codice 147

Principio

La cartuccia codice 147 è un tubo in rete di acciaio inossidabile 100 mesh da 4,8 mm di diametro riempito di 250±10 mg di Tenax TA 20-35 mesh. I fenoli sono adsorbiti e sono analizzati in gascromatografia capillare previo recupero mediante desorbimento termico.

Il metodo è stato messo a punto per i seguenti fenoli

Portate di campionamento

La tabella accanto riporta i valori di portata di campionamento a 25 °C (298 K) e 1013 hPa.

Effetto della temperatura, dell'umidità e della velocità dell'aria

La variazione della portata di campionamento con la temperatura espressa in kelvin (K) in relazione alla portata di campionamento a 298 K (25 °C) è data da

$$Q_K = Q_{298} \left(\frac{K}{298}\right)^{1.5}$$

dove $\mathbf{Q}_{\mathbf{K}}$ è la portata alla temperatura \mathbf{K} e \mathbf{Q}_{298} è il valore di portata alla temperatura di riferimento di 298 K.

La portata di campionamento è invariante con l'umidità nell'intervallo 15-90% e con la velocità dell'aria fra 0.1 e 10 m·s-1.

	portata ml.min ⁻¹	Limite rivelabilità¹ µg.m [.] ³	Incertezza a 2σ %
fenolo	38	0,3	24,1
o-cresolo	45	0,4	17,5
m-cresolo	48	0,4	8,0
p-cresolo	48	0,4	8,0
2,3-dimetilfenolo	53	0,4	26,0
2,5-dimetilfenolo	51	0,3	25,2
2,6-dimetilfenolo	46	0,4	7,6
3,4-dimetilfenolo	60	0,4	22,1
3,5-dimetilfenolo	61	0,4	22,2

¹riferita ad esposizione di 24 ore e misurata con rivelatore a spettrometro di massa nelle condizioni di desorbimento descritte in Analisi

fonte: http://l